Tuesday, February 24, 2015

A Green Innovation that Protects and Strengthens: Eco-Friendly Flame Retardant for Timber Buildings

In Australia, the effects of global warming have raised concerns about the methods used to fire-proof buildings made of timber, a necessary precaution in a country whose torrid summer heat and parched climate pose significant fire hazards. However, most of the current methods for fire-proofing timber materials involve substances that are toxic to human health and the environment.
Flame retardants rely on chemical reactions that impede the ignition of flammable materials and slow the spread of a fire. But the benefits of safeguarding homes and property while protecting humans from fire danger must be weighed against the risk of exposure to potentially harmful chemicals.
To address that challenge, researchers from Stony Brook University have developed a new type of timber flame retardant that’s not only sustainable and environmentally friendly, but also increases the strength of treated materials dramatically. The flame retardant consists of a phosphorus-based compound called resorcinol bis (RDP), which the Environmental Protection Agency (EPA) has declared a preferred substitute for halogenated flame retardants.
According to Miriam Rafailovich, Distinguished Professor from Stony Brook's Department of Materials science and co-director of the Program in Chemical and Molecular Engineering, the compound penetrates the natural structure of timber materials and interacts with its cellulose, producing a wood-plastic composite that surpasses UL94 V-0 flammability standards. This means that a vertical specimen of the material will stop burning in as few as 10 seconds when set alight, without giving off any lit particles.
"The breakthrough was in the formulation of a compound that extinguishes a flame without decomposing into toxic byproducts," Rafailovich said.
Testing by Stony Brook medical experts also concluded that timber materials treated using RDP pose no hazard to human health, despite the material itself being cytotoxic when in a liquid, unreacted state. Another advantage of the treatment process is that can dramatically improve the durability of timber materials by reinforcing their cellulose structure, increasing their strength by as much as five-fold. The university has filed an application for patent acquisition.
According to a BCC Research report, global consumption of flame retardant chemicals should reach 5 billion pounds in 2018, nearly a billion more than the level in 2013. The report forecasts a compound annual growth rate (CAGR) of 5% between 2013 and 2018. Cost, performance, lack of toxicity, recycling concerns and the push toward more green and non-halogenated products will influence the smallest to the largest manufacturers of flame retardant chemicals.
For our BCC Research reports on flame retardant chemicals, visit the following links:
Related conference

No comments:

Post a Comment

Bookmark and Share