Thursday, March 5, 2015

Treating Cancer Tumors is One Implantable Device Away

Chemotherapy stops or slows the growth of cancer cells, but it also damages healthy cells. Researchers are exploring treatments that attack cancer cells with better precision, thus reducing the risk of harming healthy tissue. A team of scientists has developed just such a technique, called iontophoresis, which uses an electric field to deliver high concentrations of chemotherapy to select areas.

"A big challenge with many drugs is getting them where they need to go," said Lissett Bickford, assistant professor in the Department of Biomedical Engineering at Virginia Tech and a co-author of the study. "(Iontophoresis) basically forces drugs directly to and through the tumor, allowing all cancer cells in the treatment zone to get that exposure."

Iontophoresis uses an electric field to push drugs into the tumor. A small device that generates the electric field is implanted in the tumor or placed on the skin. The device also contains a reservoir of chemotherapy. When activated, the electric field pushes the drug into the entire tumor.

In mice with human inflammatory breast cancer, treatment with both iontophoresis and regular intravenous chemotherapy increased survival time as compared with either treatment alone. Treating mice with iontophoresis after intravenous chemotherapy treatment boosted the concentration of the drug in the tumor, but barely raised the concentration in the blood plasma. This indication suggests there could be fewer side effects, an all-too-common complaint associated with chemotherapy.

The researchers say iontophoresis effectively delivered the drug despite pressure from the surrounding area of the tumor, a common complication in drug treatment strategies. This pressure, which is caused by leaks from the blood vessels of the tumor, often inhibits or complicates other drug delivery strategies.
Iontophoresis could allow doctors to use more potent cancer-fighting drugs by localizing their effects or pave the way for new multi-drug combinations by better aiming the more toxic compounds at the tumor and freeing the rest of the body from their harmful effects.

"This may ultimately lead to a reduction in the morbidity and mortality rates commonly found in different types of cancer," says James Byrne, lead author of the study and a postdoctoral researcher and medical student at the University of North Carolina.

According to a BCC Research report (BIO048C), newer therapies like iontophoresis and others will surpass conventional cancer therapies and propel sales in the global cancer therapy market to $111 billion in 2019. The U.S. National Institutes of Health estimated the overall cost of cancer in the United States was $206.3 billion in 2006, with $78.2 billion in direct medical costs.

For our BCC Research reports on cancer, visit the following links:

No comments:

Post a Comment

Bookmark and Share