Tuesday, November 11, 2014

The Impact of DNA Vaccines on the Biotechnology Industry

Vaccines are considered a standard preventive treatment in many clinical situations today. They work by inducing an immune response against an inert pathogen to protect against future infection.
A new type of vaccine – DNA vaccines – provide an alternative method to produce immunity in organisms. First developed during the 1990s, DNA vaccines use genetically engineered DNA to produce an immune response. They work by causing the body to translate the injected DNA sequences into pathogenic proteins. The body then creates antibodies specific to the proteins, which creates immunity without causing infection. This is important for immune-compromised patients, including those infected by HIV; conventional vaccines can potentially trigger an actual infection in weakened immune systems. 
Though currently still in the experimental stages, DNA vaccines have several advantages over conventional vaccines. Conventional vaccines cover only a small number of diseases, but DNA vaccines are relatively easy to design for a range of difficult pathogens. DNA vaccines will target a wide range of diseases, such as cancers and allergies, as well as infectious diseases. Studies over the past decade suggest that DNA vaccines can be used for immunity against infections and diseases such as HIV/AIDS and malaria that kill millions worldwide every year.
DNA vaccines are also easier to distribute than traditional vaccines because they are more stable, avoid the risk of accidental infection by the pathogen, and require no refrigeration. Conventional vaccines can potentially become inert when stored in improper environments, while DNA vaccines are less susceptible to damage due to environmental conditions, such as extreme temperatures or humidity. They can be administered safely to people who live in areas where regular vaccines are difficult to maintain or may be compromised due to the lack of proper storage facilities.
DNA vaccines, if integrated into the body appropriately, can produce a sustained immune response, making booster vaccinations unnecessary. After receiving a single DNA vaccine, an individual can have lifelong immunity to a disease, decreasing the need (and cost) for booster shots.
In addition to the general medical benefits, DNA vaccines can provide a large economic benefit. Due to the decreased restrictions in the production and storage of DNA vaccines compared to regular vaccines, the cost of producing and maintaining DNA vaccines is much lower. This can be especially beneficial to people in developing countries. According to certain case studies, the cost of developing and manufacturing a successful and beneficial conventional vaccine can range from $500 million to $1 billion. Comparatively, the development and manufacturing of a DNA vaccine ranges between $200 and $300 million.
Currently there is limited knowledge of the effects of DNA vaccines on humans, since most tests have been conducted only on lab animals. Potential side effects could include chronic inflammation, because the vaccine continuously stimulates the immune system to produce antibodies. Other concerns include the possible integration of plasmid DNA into the body’s host genome, resulting in mutations, problems with DNA replication, triggering of autoimmune responses, and activation of cancer-causing genes.
A 2014 market research report published by BCC Research forecasts the global market for DNA vaccines will grow from $305.3 million in 2014 to $2.7 billion in 2019, yielding an impressive compound annual growth rate (CAGR) of 54.8%. While research tools and animal health applications currently comprise the commercialized market, human clinical DNA vaccines will make up the vast majority of this market by 2019.
In the age of genomics where DNA can be sequenced and created more quickly, accurately, and cheaper than ever before, and where safety and handling live pathogens is fraught with risk and difficulty, further research on DNA vaccines is surely a worthwhile pursuit when addressing modern food security, animal health and perhaps even human healthcare challenges.
For our market research report on DNA vaccines, visit the following link:

No comments:

Post a Comment

Bookmark and Share